Fair News Reader: Recommending News Articles with Different Sentiments Based on User Preference

نویسندگان

  • Yukiko Kawai
  • Tadahiko Kumamoto
  • Katsumi Tanaka
چکیده

We have developed a news portal site called Fair News Reader (FNR) that recommends news articles with different sentiments for a user in each of the topics in which the user is interested. FNR can detect various sentiments of news articles, and determine the sentimetal preferences of a user based on the sentiments of previously read articles by the user. While there are many news portal sites on the Web, such as GoogleNews, Yahoo!, and MSN News, they can not recommend and present news articles based on the sentiments they are likely to create since they simply select articles based on whether they contain userspecified keywords. FNR collects and recommends news articles based on the topics in which the user is interested and the sentiments the articles are likely to create. Eight of the sentiments each article is likely to create are represented by an “article vector” with four elements. Each element corresponds to a measure consisting of two symmetrical sentiments. The sentiments of the articles previously read with respect to a topic are then extracted and represented as a “user vector”. Finally, based on a comparison between the user and article vectors in each topic, FNR recommends articles that have symmetric sentiments against the sentiments of read articles by the user for fair reading about the topic. Evaluation of FNR using two experiments showed that the user vectors can be determined by FNR based on the sentiments of the read articles about a topic and that it can provide a unique interface with categories containing the recommended articles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PENETRATE: Personalized news recommendation using ensemble hierarchical clustering

Recommending online news articles has become a promising research direction as the Internet provides fast access to real-time information from multiple sources around the world. Many online readers have their own reading preference on news articles; however, a group of users might be interested in similar fascinating topics. It would be helpful to take into consideration the individual and grou...

متن کامل

Transfer Learning from APP Domain to News Domain for Dual Cold-Start Recommendation

News recommendation has been a must-have service for most mobile device users to know what has happened in the world. In this paper, we focus on recommending latest news articles to new users, which consists of the new user coldstart challenge and the new item (i.e., news article) coldstart challenge, and is thus termed as dual cold-start recommendation (DCSR). As a response, we propose a solut...

متن کامل

News Recommending based on Text Similarity and user Behaviour

In this paper we describe a method for recommending news on a news portal based on our novel representation by a similarity tree. Our method for recommending articles is based on their content. The recommendation employs a hierarchical incremental clustering which is used to discover additional information for effective recommending. The important and novel part of our method is an approach to ...

متن کامل

Recommending News Articles in the CLEF News Recommendation Evaluation Lab with the Data Stream Management System Odysseus

A crucial aspect of recommending news articles is the relevance of currentness of articles. Every day, news portals add plenty of new articles. Typically, users are more interested in recently published articles (or articles that provide background information to recently published articles) than in older ones. That leads to the demand to continuously adapt the set of recommendable items in a r...

متن کامل

NIA: System for News Impact Analytics

The analysis of news impact on people is relevant to a variety of applications, ranging from monitoring product and companies reputations, to stock market prediction. Therefore, it is important to understand the underlying mechanisms which affect the propagation of news and drive the evolution of sentiments in one way or another. In this demonstration paper, we describe NIA, a system that ident...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007